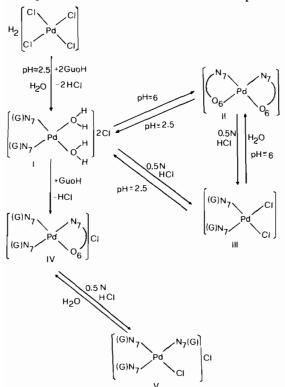
Palladium Reactions with Guanosine. Definitive Evidence of O_6N_7 Chelation

G. PNEUMATIKAKIS, N. HADJILIADIS

University of Athens, Inorganic Chemistry Laboratory, Navarinou 13A, Athens, Greece


T. THEOPHANIDES

Université de Montréal, Department of Chemistry, Montreal, P.Q., Canada

Received January 14, 1977

The reactions of palladium with the purine base Guanosine have been investigated and it has been found that the palladium reactions are much faster than the corresponding platinum reactions [1, 2]. Using this nucleoside it has been found that it is susceptible to attack by the palladium salts at the N_7 atom first, and subsequently chelation O_6N_7 has been obtained under certain conditions. Evidence of O_6N_7 chelation has been reported previously [2-5] with platinum.

A number of reaction products were identified in this report indicating that beside a single attack at N₇, bidentate O_6N_7 chelation involving one base could also occur. This purine base forms complexes of the type *cis*- and *trans*-Pd(O_6N_7)₂ [6]. The following scheme shows the reactions and the products

obtained starting from H₂PdCl₄ or K₂PdCl₄ and Guanosine. H₂PdCl₄ or K₂PdCl₄ reacts with 2 mol of Guanosine in water at a pH \sim 2.5 (HCl) and produces immediately the ionic diaquo monomer I which has been isolated and characterized (Scheme). In this compound Guanosine is a monofunctional ligand linked to palladium through N_7 only. This is confirmed by ¹H nmr and ir spectra, which indicate a shift [1, 2] of the proton H₈ and that the free ketone carbonyl, *i.e.*, the $C_6=O$ stretching is not perturbed at all by complexation. In addition, the compound is a 1:2 electrolyte in water ($\Lambda_m = 240 \text{ ohm}^{-1} \text{ cm}^2$ mol⁻¹). The reaction processes shown in the scheme support the monomer nature of this diaquo complex. The diaquo monomer, if left in water for 24 hr, forms the non ionic zero charged bis chelate complex II, in which the $C_6=O$ stretching frequency is shifted to lower frequencies [2] by about 75 cm^{-1} (from 1700 cm⁻¹, which is the free carbonyl $C_6=0$ stretching frequency to 1625 cm⁻¹ on chelation). At a pH \sim 6, the N₇O₆ chelate complex II precipitates immediately. The complex bis-chelate, $Pd(O_6N_7)_2$, is a non electrolyte and does not contain chloride, also the Pd-Cl stretching frequency is absent from the ir spectra. The formation of HCl in solution during this reaction is shown from conductivity and pH data. This compound is transformed reversibly into compound III in which the palladium-oxygen bonds break and in the presence of 0.5N HCl form Pd-Cl bonds with the opening of the chelate rings and the formation of the cis-dichlorodiguanosinepalladium (II). Compound III can be also prepared from I directly with 0.5N HCl and in a reversible fashion (see scheme).

It has been also found that the diaguo monomer of palladium reacts with excess guanosine and gives the extremely interesting compound IV in which we have two guanosine molecules linked through N₇ to palladium and the third base forms a chelate ring with O_6N_7 . The compound is ionic with ionic chloride and analysis, isolation and characterization of the complex strongly suggest the presence of a 1:1 electrolyte in DMF. The compound reacts with 0.5N HCl and forms V which now has again three guanosine molecules in the inner sphere but they are all coordinated as monofunctional ligands, i.e., only through N7. The ir of this 1:1 electrolyte shows only free C₆=O stretching at 1700 cm⁻¹ and a Pd-Cl stretching at 325 cm⁻¹, indicating the breaking of the Pd-O bonds and the attack of palladium by chloride ions to form Pd-Cl bonds (see Table for analytical data).

The reactions of palladium with guanosine compared to platinum show two distinct differences: 1) faster reactivity of palladium towards oxygen, and 2) the competitive effect of making and breaking

Complex		Color	M.P. (°C)	% Н	Н	С	Pd	$v(C_6=0)$ cm ⁻¹	ν(PdCi) cm ⁻¹	Nmr Shifts in ppm	Solvent
I	cis-[Pd(GuoH) ₂ (H ₂ O) ₂]Cl ₂	Yellow	220 °C, D			30.77 30.41	13.64 13.60	1700	-	8.43	D20
п	cis-[Pd(GuoH)2]	Light Yellow	165 °C, D	calcd found			15.86 15.50	1625		_	
ш	<i>cis</i> -[Pd(GuoH) ₂ Cl ₂]	Yellow	195 °C, D			32.26 32.60	14.30 14.00	1700	325	9.17	2N DCl
IV	<i>cis</i> -[Pd(GuoH) ₂ Guo]Cl	Light Yellow	180 °C, D	caled found		36.37 35.90	10.75 11.00	-	_	8.49	D20
v	[Pd(GuoH) ₃ Cl]Cl	Light Yellow	215 °C, D	calcd found		35.04 34.70	10.36 10.80	1700	325	8.50	D ₂ O

TABLE. Analytical and Physical Data for Palladium-Guanosine Complexes.^a

^aD = decomposition, GuoH = Guanosine.

Pd-O bonds is again faster with palladium than with platinum. As a result, ring formation and ionization take place much faster with palladium than with platinum. Furthermore, these experiments support the proposed mechanism of the antitumor activity of *cis*-Pt(NH₃)₂Cl₂ interacting with DNA [3, 4] at the GC planes and forming O_6N_7 chelates.

Acknowledgment

We thank the National Research Council of Canada for financial support.

References

- 1 P. C. Kong and T. Theophanides, *Inorg. Chem.*, 13, 1167-1170 (1974).
- 2 N. Hadjiliadis and T. Theophanides, Inorg. Chim. Acta, 16, 77-88 (1976).
- 3 J.-P. Macquet and T. Theophanides, *Bioinorg. Chem.*, 5, 59-66 (1975).
- 4 M. M. Millard, J.-P. Macquet and T. Theophanides, Biochim. Biophys. Acta, 402, 166-170 (1975).
- 5 J. Dehand and J. Jordanov, Chem. Commun., 598 (1976).
- 6 G. Pneumatikakis, N. Hadjiliadis and T. Theophanides, to be published.